Modeling the motion of pyrolysis gas through charring ablating material using Discontinuous Galerkin finite elements
نویسندگان
چکیده
A series of efforts were made to solve a simple ablation problem with gas motion through the porous media employing finite element based Galerkin and Discontinuous Galerkin methods. First, one-dimensional solutions of Euler and magneto-hydrodynamics (MHD) equations are presented for comparison with analytical results, to validate the code. The spurious oscillations of standard Galerkin approach were mitigated using Discontinuous Galerkin method. We have shown some preliminary results for the ablation problem using both explicit and implicit Discontinuous Galerkin methods in the paper. However an unresolved exit velocity fluctuations to pressure boundary condition, due to which we are not able to go to target time of 5 seconds for this problem. We plan to resolve these issues, and take this code for application of ablation problems in higher dimensions (2-D or 3-D), and bring in plasma application on the surface.
منابع مشابه
Pyrolysis gas flow in thermally ablating media using time- implicit discontinuous Galerkin methods
In this work, we apply time-implicit discontinuous Galerkin methods to the problem of thermal ablation, where we solve for the dynamics of flow of pyrolysis gas in a charring ablating media. We have benchmarked our results with the published data. The protective coating of thermal protection system over the space vehicle is of the order of a few centimeters, and high flow speed of gas and domin...
متن کاملA Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملPolymorphic nodal elements and their application in discontinuous Galerkin methods
In this work we discuss two different but related aspects of the development of efficient discontinuous Galerkin methods on hybrid element grids for the computational modeling of gas dynamics in complex geometries or with adapted grids. In the first part, a recursive construction of different nodal sets for hp finite elements is presented. The different nodal elements are evaluated by computing...
متن کاملCoupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material
This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...
متن کاملModeling the Pyrolysis and Combustion Behaviors of Non-Charring and Intumescent-Protected Polymers Using “FiresCone”
A mathematical model, named FiresCone, was developed to simulate the pyrolysis and combustion processes of different types of combustible materials, which also took into account both gas and solid phases. In the present study, some non-charring and intumescent-protected polymer samples were investigated regarding their combustion behaviors in response to pre-determined external heat fluxes. The...
متن کامل